Аккумуляторы будущего руками российских ученых

Группа химиков нашла новый класс материалов, который поможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, новые накопители энергии будут безопаснее в эксплуатации и значительно дешевле. Вместо дефицитного лития в них будут использоваться соединения магния, цинка и даже алюминия.

Проектом руководил Артем Кабанов, кандидат физико-математических наук, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению (МНИЦТМ) СамГТУ. Помимо исследователей из Самарского государственного технического университета поиском занимались ученые из Физического института им. П. Н. Лебедева РАН (Москва), Самарского государственного медицинского университета (Самара) и Фрайбергской горной академии (Германия). Работа опубликована в журнале Physical Chemistry Chemical Physics.

Использование в качестве альтернативы литию магний-, цинк- или алюминий-ионных соединений серьезно снизило бы удельную стоимости хранения энергии. Это подтолкнуло бы в развитии, как электротранспорт, так и область возобновляемой энергетики. Но пока разработка металл-ионных аккумуляторов сдерживается отсутствием ключевых элементов таких батарей — электродов и электролитов с высокой ионной проводимостью. Именно такие перспективные соединения искала группа Кабанова.

Ученые из СамГТУ вместе с коллегами проанализировали свыше 1,5 тысячи химических соединений. Исследуемые материалы были пропущены через систему теоретических фильтров по принципу «от простого к сложному». «Для каждого соединения химики рассчитали характеристики свободного кристаллического пространства, энергию активации диффузии ионов, коэффициент диффузии и проводимость. В итоге они отобрали 16 соединений, которые могут быть эффективными ионными проводниками», — сказано в пресс-релизе СамГТУ.

Среди отобранных соединений был выявлен новый класс кристаллических материалов, которые обладают особенно высокой катионной проводимостью. Эти вещества относятся к структурному классу La3CuSiS7, и их ионная проводимость в 10–100 раз выше аналогов.

«Результаты нашей работы помогут ускорить разработку аккумуляторов нового поколения. С помощью теоретических методов мы смогли найти новые перспективные материалы. Наша следующая цель — синтезировать и экспериментально подтвердить характеристики найденных веществ, после чего можно будет собрать прототип аккумулятора», — говорят исследователи.

Наполнит энергией ваше рабочее пространство

Источники бесперебойного питания для офиса и дома, а также другие устройства для защиты электрооборудования от проблем с электричеством

Свежие материалы

Читайте еще