Ученые Национальной лаборатории им. Лоуренса в Беркли (Lawrence Berkeley National Laboratory) впервые получили объемное изображение скирмиона — наноразмерного магнитного вихря. Это настолько устойчивая структура, что она может служить элементом памяти и логики в обычных и квантовых вычислениях. Спиновая сущность скирмиона подразумевает предельно малое потребление энергии и высокую надежность — все это может привести к прорыву в системах хранения и расчетов.
Традиционно магнитный скирмион рассматривался как двумерный объект. Однако в реальных условиях материал, в котором возникают скирмионы, имеет некий физический объем, в который скирмионы «запускают» свои «магнитные щупальца» и тоже приобретают объем. В этом объеме структура скирмионов не может считаться однородной. Их спиновая структура претерпевает изменения: от ориентации вверх строго в центре до ориентации строго вниз по краям. Это придает скирмионам определенные свойства, которые необходимо учитывать. Но сначала все это нужно увидеть и измерить.
«Наши результаты обеспечивают основу для метрологии на наноуровне для устройств спинтроники», — сказал Питер Фишер (Peter Fischer), старший научный сотрудник Национальной лаборатории им. Лоуренса в Беркли при Министерстве энергетики США, который руководил исследованием.
Для исследования скирмионов ученым предоставила образец компания Western Digital, что само по себе интересно. Это многослойный материал из пленок иридий/кобальт/платина шириной 800 нм и толщиной 95 нм. Образец исследовался с помощью мягкого рентгеновского излучения методом магнитно-рентгеновской ламинографии в Швейцарии.
С помощью рентгеновской ламинографии «вы можете в принципе реконфигурировать [скирмион] на основе множества изображений и данных», как пояснили авторы работы. Этот процесс занял месяцы и, в конце концов, позволил лучше понять спиновые структуры скирмионов. Полное понимание 3D-спиновой текстуры скирмионов «открывает возможности для изучения и адаптации 3D-топологических спинтронных устройств с расширенными функциональными возможностями, которые не могут быть достигнуты в двух измерениях».